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The effect of a weak magnetic field on the diffusion of noninteracting electrons 
in a disordered system is studied in a nonlinear a-model context. The effective 
Lagrangian describing the soft modes of the system in the weak field limit is 
derived. The result does not have the simple form that has been suggested by 
several authors. Therefore the crossover of the system under a weak perturbing 
magnetic field is not analogous to that found in spin systems. 
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1. I N T R O D U C T I O N  

In 1979 Wegner I1) showed how the diffusive behavior of noninteracting 
electrons in a disordered system can be mapped onto a nonlinear a model. 
The effective Lagrangian is expressed in terms of matrix fields Q varying in 
an ensemble which depends on the symmetries of the original electronic 
system. This leads to a formal derivation of the one-parameter scaling 
theory of Abrahams et al.~2); however, recently Kravtsov and Lerner ~3) 
have pointed out that there may be some instabilities in this theory. In this 
paper we will discuss the effect of a uniform magnetic field on a d-dimen- 
sional disordered electron system in the extreme weak field limit for d >  2, 
using Wegner's formalism. We find that even if we put aside the possible 
problems pointed out by Kravtsov and Lerner, the form of the symmetry- 
breaking term in the effective Lagrangian is not of the simple type conjec- 
tured in the literature, and hence the calculation of the crossover from the 
zero-field fixed point is more complicated than has been supposed. 
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Following on from Wegner's original work, several authors wrote 
down a nonlinear a model describing noninteracting electrons in a dis- 
ordered system in the presence of a magnetic field B. This model had a 
unitary symmetry as opposed to the orthogonal symmetry found in the 
zero-field case. Hikami r obtained the zero-field model by mapping 
diagrams found in perturbation theory onto those found in the nonlinear 
model. He then argued that for B r 0 the diffusion pole disappears in the 
particle-particle channel leading to the lowering of the symmetry from 
orthogonal to unitary. Efetov e t  al. (5) started from a model Hamiltonian 
with various interactions and derived nonlinear a models with various 
corresponding symmetries; in particular, they found that the presence of a 
magnetic field gave the unitary case. Later Pruisken (6) elaborated on this 
work. He found that in two dimensions for strong fields an extra term of a 
topological nature is important and used this to discuss the quantum Hall 
effect. 

It is now natural to ask how the crossover from orthogonal to unitary 
symmetry occurs. It has been suggested/4"71 that a relevant analogy may be 
with anisotropic spin models. The crossover phenomena associated with 
such systems have been thoroughly studied in the context of nonlinear a 
models. ~8'9) If it is assumed that the symmetry-breaking term that occurs 
when the field is switched on is of this type (i.e., appears as a single mass 
term in the field theory), then the calculation of the crossover has been 
performed by Wegner. t~~ it is the purpose of this paper to show 
that the symmetry breaking is not of this type. 

We should point out at this stage that several papers in the literature 
have addressed the weak field problem and crossover. Although they do 
not use field-theoretic techniques, their assumption about the symmetry 
breaking is of the kind discussed above. Khmel'nitskii and Larkin ~7) use the 
spin analogy, Belitz ~11) has a massive propagator for the particle-particle 
modes, and Oppermann ~12) has a phenomenological interpolation between 
the two models that leads to the same crossover exponent calculated by 
Wegner. All this contrasts with a comment by Levine e t  a/. (13) to the effect 
that the nature of this crossover is still open. We now go on to a systematic 
investigation of this question. 

In Section 2 we begin from a model Hamiltonian for noninteracting 
electrons with disorder in the presence of a magnetic field and obtain a 
field-theoretic representation of the problem. The weak field limit is 
discussed in Section 3 and an effective Lagrangian obtained. The form of 
the symmetry-breaking term is found in Section 4 and we conclude by 
making some general comments in Section 5. 
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2. F I E L D - T H E O R E T I C  F O R M U L A T I O N  

In this section we begin from a simple model of noninteracting elec- 
trons in a magnetic field B and a random potential V(x). We derive a field- 
theoretic representation for the Green's functions of the system, which 
allows the effects of the disorder to be studied. The approach and the 
notation will closely follow McKane and Stone. ~14) 

The starting point is the model Hamiltonian 

H = - ( V  - ieA) 2 + V(x) = Ho + V(x) (2.1) 

where h = c = 1, m = �89 As usual, the random potential is taken to have a 
Gaussian distribution 

1 
P[V] = e x p - ~ 7  f dax V2(x) (2.2) 

In the zero-field case (14) a functional integral identity for the Green's 
functions involving n real replica fields, with n--, 0, was used in order to 
perform the average over the random potential. In this case, where H is no 
longer symmetric, but is Hermitian, the corresponding identity involves n 
complex replica fields ~b ~ (c~ = 1, 2 ..... n): 

G(x, y; V, E+_ i11)= +_ i lim n $  D$* q51(x) q51*(y) 
n ~ O  

x e x p -  dJz [ +_i~*(H- E)(U +qO~*O ~] (2.3) 

In this and subsequent equations repeated indices are summed over. 
Actually, there are a number of other representations we might have used. 
For instance, we could have worked with two-component, real, commuting 
fields instead of complex commuting fields or with anticommuting 
(Grassmann) fields or even with a combination of anticommuting and 
commuting fields. However, we find the complex commuting representation 
(2.3) the clearest. 

The quantities we want to study are those that may show critical 
behavior(14): 

Ge(x, y; V, E+ i~I) Ge(x, y; V, E -  iq) 

G~(x, y; V, E+ iq) Gh(x, y; V, E -  iq) 

Gh(x, y; V, E+ ii1) Ge(x, y; V, E -  iq) 

Gh(x, y; V, E+ill) Gh(x, y; V, E--iq) 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 
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where the average is over the random potential V, 

Ge(x, y; V, E +  #1) = is lim f D~s,c D~* ,~1 ~x~ r * (y) 
- -  n ~ 0 ~ r s , e  " r s ,  e \  ! 

x e x p - f  ddzC~*[is(H-E)+~l](J ,~,~ (2.5a) 

Gh(x, y; V, E +  iq)= is !i In ~ f D*s,h D*s*h r ~sl,~(y) 

X exp -- f ddz q~,~,~ [ i s (H T - E) + tl] es~h (2.5b) 

and where s = + for E +  iq and the symbol e (h) stands for electron (hole). 
Although the expectation is that the particle-particle channels [Eqs, (2.4a) 
and (2.4d)] will become noncritical when the magnetic field is switched on, 
in order to study the crossover, we need to investigate all four com- 
binations. We note for further use that 

Ge(x, y; V, E+_ iq) = Gh(y,  x; V, E +  iq) (2.6a) 

G*(x, y; V, E_+ #/) = Gh*(x, y; V, E ~  it/) (2.6b) 

For reasons that will become apparent, we use (2.6a) to rewrite the 
expressions (2.4) in the form G(x, y; V, E + i l l ) G ( y ,  x; V, E-i~1).  Now 
using Eq. (2.5), we can write the four expressions (2.4) as 

( ~ l , e ( X )  ~l~h(X)  q~,h(Y) r (2.7a) 

(#+,o(x)  r ' '* r _~(y)  r +,~(y) ) (2.7b) 

(r r r r (2.7C) 

(r eL*~(X) ~bl ,c(y) r ) ) (2.7d) 

where the brackets ( . - . )  are defined by 

(a ( x ,  y ) )  = ~ D V o ( x ,  y; V) exp - (1/27) ~ ddz V2(z) 
DVexp - (1/27) ~ ddz V2(z) (2.8) 

and where o(x, y; V) is given by 

o(x, y; V) 

= D * D r  D#p ,~ Dr162 Dr ,h r a(x, y) lim Dr r 
n~0  

x exp -- f ddz { iO +*~[ H - -  E - -  " ~ " ~* ~ " zr/] r +,o + lr +,h[-H -- E- -  tt/] r ,J 
- iq)~_*c[ H -  E +  iq] r - iqU*~[ H T -  E +  iq] r } (2.9) 
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So far we have attempted to write down explicit formulas for the sake 
of clarity. However, it is obvious that they have also become very cumber- 
some. To make subsequent expressions more compact, we introduce the 
following notation: 

(i) An index a = (c~, i), where i =  1, 2 labels electrons and holes, so 
that a = 1, 2,..., 2n. 

(ii) An index A = (a, s), where s =  1, 2 labels the plus and minus 
sectors, so that A = 1, 2,..., 4n. 

As in the zero-field case, (14) we now define composite fields QAS(x), 
which essentially play the role of the combination Oa(x)~S*(x). More 
specifically, they are introduced by eliminating the fourth-order term in the 
exponent of Eq. (2.9) (which is generated by performing the average over 
V) using 

f DQexp- f  ddz {�89 trQ2+i,/1/2OA*QA~C~cOC} 

--I D Q e x p - f  d~z {�89 Q2} e x p - f  dJz {�89 -~ba*q~5] 2} (2.10) 

The minus sign in the fourth-order term means that it is invariant under 
the group of transformations U(2n, 2n). Consequently, the matrix Q in 
(2.10) is pseudo-Hermitian: 

( Q ~ + ) ,  = ba (Q+ab )* = _Q~+ , (Qab ) ,  = Qba_ (2.11) Q++~ 
It is useful when dealing with the noncompact symmetry groups that arise 
in this problem to define the matrix 

C=II;n O[2nl (2.12) 

Then the condition (2.11) becomes CQ*C= Q. 
Substituting Eq. (2.10) into Eq. (2.9) after averaging, we can now per- 

form the ~b integrals, since they are Gaussian. In fact, it is easier not to deal 
with specific operators a(x, y), but to introduce source terms for the ~b 
fields; functional differentiation then gives any desired operator. As in 
Ref. 14, we can show that the same quantities can be obtained by intro- 
ducing source terms for the Q fields and functionally differentiating with 
respect to these new sources. This leads us to the generating functional 

fQ 4A~n ) Z[J] = lim Dq5 A DO A* DQ 
n ~ O  1 

xexp--fdaz(�89 ) (2.13) 
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where 

A AB(Q ) = 71/2QAB + (~afl 

H o - E - i  q 0 0 
0 H ~ -  E -  i~ 0 
0 0 H o - E +  i~ 
0 0 0 

op 
H ~ -  E + iq 

(2.14) 

Performing the ~b integration in Eq. (2.13), we obtain 

Z[J] = !imof D Q e x p - { T r  In A(Q)+ f daz [�89 Q2_ jAt~QAB]} (2.15) 

where here Tr means trace over the spatial as well as the internal indices. 
Before proceeding further with the determination of the effective 
Lagrangian, let us write down the form of the expressions (2.4), and thus 
(2.7), in terms of the Q fields. They are, respectively, 

�9 1 / ~ 1 1  - y  \ ~ +  ,eh(x) QXl+,he(y)> (2.16a) 

1~.-,11 Ql1 - 7  ~,~+ ,ee(x) +,oe(Y)> (2.16b) 
- - 1 /  f ~ l l  - 7  k~+-,hh( x) Q~+,~h(y)> (2.16C) 

l / f ,  l l  11 ) - 7  ~+-,h~(x) Q-+,r (2.16d) 

The new Lagrangian has terms linear in Q, which we deal with in the 
usual way, that is, we introduce O = Q - ( Q )  and expand in Q. The 
vertices for the O fields can be found via the identity 

Tr in A = Tr ln(T+ T) = In det(T+ T) 

= lnde t  T+  i 
(_1 )  .+1 
- - T r ( T  1TT I~P--.T ~P) (2.17) 

n = l  n ~ 

n times 

where T=A(<Q>)and TAB(X)=T1/2QA~(X ). We then determine < Q ) b y  
asking that 

which gives 

6QAB(x ) TrlnA(Q)+-~f  ddztrQ 2 = 0  (2.18) 
Q = o  

<QAA > = --7 1/2T;$ AA (2.19) 
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where in this case repeated indices do not imply summation. All off- 
diagonal terms (QAB), A r B, are zero. 

The solution to (2.19) is replica-independent and therefore this 
equation can be written simply as four separate equations: 

( Q  + +,o~) = -7~/~Gg(x, x; +_ ) 

<Q+_+,hh> = --Yl/2Gh(x, x; +_ ) 

(2.20a) 

(2.20b) 

where 

G~(x, y; + ) =  [Ho-ET-i~+y~/2(Q++,o~)]x.~ (2.21a) 

Gh(x, Y; _ ) =  [H~--ET-itl+y~/Z(Q++,hh)]x~ (2.21b) 

The subscript zero on the Green's functions (2.21) indicates that they are 
zeroth-order approximations to Eqs. (2.5) (after averaging), formulated in 
a simple self-consistent scheme. 

Having eliminated the linear term, we now go on to calculate the 
quadratic terms in Q in the Lagrangian. For our purposes it is sufficient to 
write down only the terms involving Q +_ and () +. These are 

1 J ddx ddy {(~*Y+a(x) C+_ (x, y) ~e Q+'#~ ,l(y) 
2 

c + _ ( x , y )  Q+ 2(Y) 

+ Qt~#+,3(x) ch+e-( x' Y) Q~+~ ,3(Y) 
+ Ot~+ ~(x) ~ _ , C+ (X, y)  Q~+~ ,4(Y) 

-[- Q++ccfi,l(X ) c e  e +(x, y) O~+,~(y) 

+ O_~+~(x) c~ y) O_~+,~(y) 

@ (f~#+ccfl ,3(X ) che+(Y, y) Q~a+,3(Y) 

+ ~*#_~(x) c~',+(x, y) &#+,~(y)} (2.22) 

where for notational convenience we have substituted 1 for the com- 
bination (eh), 2 for (ee), 3 for (hh), and 4 for (he), in the Q fields. For 
instance, Q~m.eh(x)=Q~ma(x). We have also used the symmetries 
exhibited in Eq. (2.11): 

(Q*)~#ma = - Q ~ T , 4  (Q*)~+,2 ~# , = -Q_~ -~,2, (Q*)~-#~,3 = -Q~-va  

(2.23) 
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The definitions of the C factors are 

Ceg__v_(x, y )=6d(x - -y ) - -TG~(x ,  y; +_)G~(x, y; -T-)  (2.24a) 

eh  C+~(x, y )=ad(x - -y ) - -?G~(x ,  y; +_)G~(x, y; T-) (2.24b) 

C+~(X,he y ) =  6~(X -- y) -- 7Gh(x, y; +_ ) G~(x, y; T ) (2.24c) 

ch+_h v_ (X, y) = 6a(X -- y) -- ?Gh(x, y; +_ ) Gho(X, y; -T- ) (2.24d) 

We have not included the massive Q+ + and Q _ _  fields in Eq. (2.22); 
these only manifest themselves in the final form of the effective Lagrangian 
via a constraint, in a way that is by now familiar. {1'14 16) The Q+-v.1 and 
(~_+ +.4 fields may also become massive due to the presence of the magnetic 
field. However, we do not eliminate them via a constraint-- they are 
included because it is precisely this possible mass generation for small fields 
that we wish to study. 

Before looking at the exact form of effective Lagrangian, we need to 
investigate the structure of the C factors in (2.24a)-(2.24d) in some detail. 
This we now go on to do. 

3. F O R M  OF T H E  E F F E C T I V E  L A G R A N G I A N  

In this section we present a calculation of the effective Lagrangian in 
the presence of a magnetic field. 

We note that the degeneracy of the C factors [defined in Eq. (2.24)] 
for the particle-particle and particle-hole channels has been lifted due to 
the presence of the magnetic field. General considerations allow the elec- 
tron and hole Green's functions to be written as  (17) 

G•(x, y; A) = exp ie A .  ds ~ ( x -  y; B) (3.1a) 

<f/ ) G h ( x , y ; A ) = e x p  - i e  A ' d s  G h ( x - y ; B )  (3.1b) 

where G~ 'h depend only on the magnetic field B and are translationally 
invariant. Introducing these results into Eq. (2.24), it is clear that the par- 
ticle-hole propagators C ~ and C he a r e  translationally invariant, as in the 
zero-field case. However, in the particle-particle propagators C ee and C hh, 

the gauge factors do not cancel. It is the lack of translational invariance in 
these latter terms that makes the magnetic field problem more difficult than 
the zero-field one- -a  simple small-momentum expansion is not possible. 
Let us now discuss the corresponding expansion required to obtain an 
effective Lagrangian suitable for investigating critical behavior in the weak 
field limit. 
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In weak magnetic fields, if the cyclotron radius is much larger than the 
electron mean free path l, we may use the quasiclassical approximation uS) 

) G~(x, y; A) = exp ie A- ds Go(x-- y; B = 0) (3.2a) 

+o.. 
where the integral is along a straight line connecting x and y. Notice that 
Go is the same for electrons and holes. 

To evaluate the C factors, we substitute Eq. (3.2) into Eq. (2.24). Let 
us consider C eh and C he first, since the treatment of these is exactly as in 
the zero-field case. (14) In terms of Go they are 

ch+Cp)=Ceh(p)=fddze'P~[~d(z)--yGo(Z; +)GoCz;--)] (3.3) 

We are interested in critical behavior and so we expand for small momen- 
tum 

c h e ( p )  = c~h(p)= Co + C2 p2+ ... (3.4) 

We want to identify C o and C 2 with physical quantities; it will turn out 
that they depend On the zeroth-order density of states and diffusion con- 
stant in zero field. To see this, recall that from Eqs. (2.4b), (2.4c), (2.16b), 
(2.16c), and (2.23) 

iGS(x, y; +)12 ? l +~t QlJ = (Q+-,2(x)  +,2(y))o (3.5a) 

IGh(x, y; +)12 = -a ~-11 ( Q + - , 3 ( x )  Q1_1++3(Y) )o (3.5b) 

Using Eq. (3.2) on the left-hand side and evaluating the right-hand side 
using Eq. (2.22), we obtain 

I G o ( x - y ; B = 0 ,  +)12=7-~[C~h(x, y)]-~ =7-1[che(x ,  y ) ] - '  (3.6) 

The zeroth-order density of states r o is given by [Eq. (3.13) of Ref. 14] 

:CtSo/r/,2~o ]Co(p; + )121v2=o=7-1C l(P)lv2=o (3.7) 

using Eq. (3.6). Therefore 

Co - ~/rC~#o (3.8)  
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The zeroth-order diffusion constant/5 o is given by [Eq. (3.14) of Ref. 14] 

But from Eq. (3.6) 

Therefore 

~/5o~o 0 
2t/2 ,~o  @2 IGo(p; +)121p2=o (3.9) 

7 1C2 
3 /Go(p; + ) 1 2 -  (3.10) 

Co 

C2 ~/5o/2~7fi0 (3.11 ) 

Equation (3.8) shows the existence of a particle in the Q+_ particle-hole 
channel whose mass tends to zero as t/--* 0, as we would expect. 

Now consider an electron-electron term in (2.22), which, dropping all 
indices, can be written as 

f ddx day Q*(x) ~d(x - y) 

At low fields we can take the gauge term out of the curly brackets and 
write expression (3.12) as 

21 I f dax day Q*(x) ~Sa(x - y) 

Note that the factor in the curly brackets is just ceh(x, y) = che(x, y), SO 
that apart from the gauge terms, effectively only one type of C factor 
appears. Therefore from now on we drop the e and h superscripts on C and 
refer simply to C(x-y) ,  by which we will mean ceh(x, y) and che(x, y). 

We now use the fact that for any functions A and Q and a straight 
path ~19) 

f; exp 2ie A.ds  Q ( y ) =  {exp[(y-x)(V-2ieA)]}  Q(x) (3.14) 

to write Eq. (3.13) as 

1 
2fddxdayQ*(x) C(x -y )exp{ (y -x ) [Vx-2 ieA(x ) ] }Q(x )  (3.15) 
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If we assume the exponential to be small, which is valid for the case 
l(2eB) t/2 ~ l, then keeping only second-order terms as in Eq. (3.4), we find 

1 { } 
2 f  ddxddyQ*(x) C(x-- y) l +~(y--x)2[Vx-2ieA(x)]2+ ... Q(x) 

Introducing a new variable z = x - y ,  and integrating over z gives 

1 ddx Q*(x)[ Co - C2(V - 2ieA) 2] Q(x) 
2 d 

(3.16) 

(3.17) 

where C o and C2 are as before. Similar considerations apply to hole-hole 
terms with e changing to - e  in Eq. (3.17), 

Having identified the general features that appear, we can now 
approximate the Lagrangian (2.22), keeping only those parts likely to be 
relevant to critical behavior. As already discussed, we work to lowest order 
in a momentum expansion; in addition, we ignore all loops of the massive 
Q + + and Q__ excitations. This is exactly as in the zero-field case~ 
Q+-,1 and Q+ ,4 excitations [which from Eq. (3.17) might be thought to 
become massive] are not eliminated in this way, since it is precisely this 
aspect of the symmetry-breaking that we are trying to study. Thus, the 
effective Lagrangian is 

l-C2f ddx {Q~(4[ - (V-2 ieA)  2] 0~:1 
, , 

%*13 2 *13r162 
Q / i ,2  + Oe,2[-V ] 

+ Q},~3 [ *  - V 2 ]  Q:{,~ + {~ ~,~1, [ - (V + 2iea) 2 ] Qji,4 }'e~ (3.18) 

where i, j = 1, 2 and where the overall factor of C2 is there to agree with the 
quadratic Q+_ and Q + terms. The Q+ + and Q _ terms are eliminated 
using a constraint in the usual way. {t4) Since we are interested in the weak- 
field limit, the construction is as in the zero-field case, with the effect of a 
field included as a perturbation. When B = 0, Eq. (3.18) can be written as 

1 
C 2 f ddx {tr O [ - V 2 ] O }  (3.19) 

where 
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and where the trace is over all indices. The field 0 is complex; to make 
contact with the zero-field formulation, we decompose it into real and 
imaginary parts. This displays the underlying orthogonal symmetry. The 
constraint that determines the 0 + + and Q _ _ fields is found by asking that 
the real and imaginary parts of Q are obtained from <Q> by a (pseudo)- 
orthogonal transformation 

O(x)=O• Re(Q++) Re(Q__>0]  O(x) 

+iO• IIm(Q++> I m ( Q _ 0 ] O ( x ) >  (3.21) 

where O • is defined using the C matrix introduced in Eq. (3.12): 

0 • = COrC (3.22) 

Im<Q++ > = and O• = I4,,. But Re<Q++> = Re<Q > and 
- I m ( Q  _ > = - ~ 7 1 / 2 p o  . Therefore 

Q(x) = const - i7271/2fio0 x (x) CO(x)  (3.23) 

The constant term is irrelevant, since we can shift Q by the constant in 
Eq.(3.19). Therefore Q(x) obeys 

Q2(x) = -~27(/~o)214n (3.24) 

This is the O(2n, 2n)/O(2n)x O(2n) nonlinear a model. There has been a 
doubling up of the number of fields as compared with the usual B = 0 treat- 
ment, where the O(n, n)/O(n)x O(n) model is found. However, these two 
models give identical results in the n = 0 limit. 

When the magnetic field is switched on, the orthogonal symmetry is 
broken, as can be seen from Eq. (3.18). Our interest in this paper is in the 
form of the propagator when B # 0. We therefore now discuss the structure 
of the free part of the effective Lagrangian coming from the Q + _ and Q _ + 
fields, and leave aside the nature of the interactions generated by the con- 
straint. 

4. S T R U C T U R E  OF THE P R O P A G A T O R  

From Eq. (3.18) the free part of the effective Lagrangian for the B # 0  
problem is 

1 err Q - +,2 ~'rree----~ f dax { 0 ~  , 4 [ - - ( V - - 2 i e A )  2]  O - + , t  '1- ~/~= 0 ~  ,2[--V 2 ] "B~ 

, * , Q -  +,4} (4.1) + 0 ~ -  31- - V 2 ]  Q~+,3 + 0 ~ -  1[- - (V + 2ieA) 2] *a~ 
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The Q_ + sector gives an identical contribution to the 0 + -  sector and 
they have been amalgamated in Eq. (4.1). Also, the Q fields have been 
scaled by C~/2, so that the free part is of a conventional form, with the 
coupling multiplying the interactions. (14) From Eq. (4.1) the propagators 
for the various 0 fields can be found. Specifically, we have to diagonalize 
the quadratic forms. This cannot be done in general and so we use the 
gauge invariance of (4.1) to make a particular gauge choice. It seems 
easiest to use the Landau gauge, which in d dimensions takes the form 
A = ( - - B x 2 ,  0, 0 ..... 0), SO that F~v = ~?,Av-O,,A~, has only F12 = -Fz l  = B 
different from zero. 

In the case of the Q2 and Q3 fields we obviously go to a momentum 
space representation and find propagators lip 2, showing the massless 
modes for these particle hole channels. The Q~ and Q4 terms are what 
really interest us; we will only consider the electron-electron term from 
now on; clearly, changing e to - e  gives the hole-hole propagator. 
Therefore we wish to diagonalize 

f ddx (~t(x)(V - 2ieA) 2 Q(x) 

+7..2 Q(x) (4.2) 

The diagonalization of Eq. (4.2) is familiar from the solution of the 
Schr6dinger equation for a particle moving in a magnetic field. (2~ One 
finds that (4.2) equals 

g Q~,Y{,,,; (~n,p (4.3) 
n , p  

where 

and 

Q(x) = ~, z,,.p(X) Q,,.p (4.4) 
n,p  

2,,,p= (2n + 1)c~2+p~+ ..- +p~  (4.5) 

Here e2= 2eB and the sum over the momenta p is understood to be an 
integral over Pl,  P3 ..... Pd. The Z functions equal 

Zn.p(X) = {exp[i(plxl  + p3X3 + "'" "Jr p d X d ) ]  } 

x 2=n.T-57 ~ Hn(a~ ) exp 2 (4.6) 
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where ~ = x 2 - e 2 p l  and H n is a Hermite polynomial. One could now go 
ahead and perform calculations in this basis, but it has been suggested in 
the literature that for weak fields, at least, on diagonalization in momen-  
tum space the result would be p 2 +  m 2, where m 2 is a mass depending on 
the magnetic field. In order to check whether this is so, let us write (4.2) as 

f , 
(2rc)a (2n) a Qr(p)  F(p, p') Q(P') (4.7) 

where 

F(p, p ' ) =  - f  dax [ e x p ( i p . x ) ( V - 2 i e A ) Z [ e x p ( - i p  ' . x ) ]  (4.8) 

Expanding the exponential factors as in Eq. (4.4), we obtain 

F(p, p') = 2rc1/20:a(p~ - p',) 6(p 3 - P3)" "" 6 ( P a -  P~) 

i p l ( p 2 -  P'2) 
x exp 0{ 2 exp 2~ 2 ,,= o nV--s H" Hn 

(4.9) 

The claim is that for small a2, 

F(p, p') ~ 6U(p _ p,)[p2 + m 2] (4.10) 

Evaluating the sum in (4.9), we find that 

8 c~ 4 (4.11) f ( p ,  t9 ' )  ~- 6d([ - -  p r )  p 2  _ 2 i ~ 2 p l  ~ 2  - -  

For  small c~ 2 this is not of the form (4.10), that is, the symmetry-breaking 
term is not a simple mass term. This can be seen directly from Eq. (4.8). 
What  we have shown in this section is that, no matter  how small c~ 2 is, we 
have to use the representation (4.4) for calculational purposes. 

5. C O N C L U S I O N  

The purpose of this paper has been to clarify various statements in the 
literature concerning the form of the crossover from the zero-field fixed 
point describing a noninteracting electron moving in a random potential 
when a magnetic field is turned on. A systematic study was carried out in 
the context of field theory and an effective Lagrangian describing the 
system in a weak magnetic field was derived in what is by now a familiar 
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fashion. We found that the structure of the propagators was such that even 
for infinitesimally small magnetic fields a purely momentum space 
representation could not be used. This shows that this particular crossover 
problem is considerably more complicated than has been supposed by 
many authors. In particular, we have shown that the symmetry breaking is 
not of a simple mass type, as found in spin systems formulated as nonlinear 
a models. Calculations using the basis described in Section 4 have been 
carried out in certain instances where only the n = 0 mode was important: 
in the strong field case (21'22) and in a problem where a finite mass difference 
between the n = 0 and higher modes implied that this mode determined the 
critical behavior. 123) In the symmetry-breaking problem we have been dis- 
cussing in this paper, the situation is more complicated, and it is probable 
that all modes have to be retained in any calculation of the crossover 
exponent. 
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